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Abstract— In contrast to the traditional wireless sensor 
network (WSN) applications that perform only data collection 
and aggregation, new generation of information processing 
applications, such as pursuit-evasion games, tracking, evacuation, 
and disaster relief applications,  require in-network information 
storage and querying. Due to the resource limitations of WSNs, it 
is challenging to implement in-network information storage and 
querying in a resilient, energy-efficient, and distributed manner.  
To address these challenges, we exploit location information and 
geometry of the network and present an in-network querying 
infrastructure, namely distributed quad-tree (DQT) structure. 
DQT satisfies efficient in-network information storage as well as 
distance-sensitive querying: the cost of answering a query for an 
event is at most a constant factor (in our case 22 ) of the 
distance “d” to the nearest event in the network. DQT 
construction is local and does not require any communication. 
Moreover, due to its minimalist infrastructure and stateless 
nature, DQT shows graceful resilience to the face of failures. 

Keywords: Distance Sensitive In-network Querying, Spatial 
Querying, Distributed Quad-tree, Wireless Sensor Networks, GPSR 

I. INTRODUCTION 

Traditionally wireless sensor networks (WSNs) have been 
treated mostly as data collection and aggregation networks. 
Examples of these include WSNs deployed for environmental 
monitoring [19][22] and military surveillance [1][2]. However, 
as the WSN technology matured, WSNs started to serve more 
as active information processing tools instead of passive 
information gathering mechanisms. Examples of these 
information processing WSNs include pursuer-evader 
applications [4][20], evacuation applications [3] etc., where 
mobile entities query the WSN on the spot to learn about their 
surroundings. Latency and energy-efficiency suffer drastically 
if these queries are always routed over multiple hops to a 
centralized base station for resolution. Thus, in-network 
information storage and querying techniques, such as data 
centric storage [21] and geometric hash functions [18] have 
been developed to address these issues. 

While in-network querying alleviates the latency and 
energy-efficiency concerns of information processing WSN 
applications, certain requirements need to be satisfied by the 
in-network querying service to be deployable in practice. 
Firstly, the in-network querying service needs to be 
distance-sensitive for querying and also efficient for 

information storage. Distance-sensitivity for querying implies 
that the cost of answering a query for an event should be at most 
a constant factor “s” of the distance “d” to the nearest event in 
the network. Efficient information storage for events implies 
that the cost of advertising event information is at most a 
constant factor of the diameter “D” of the network. It is 
challenging to satisfy both properties simultaneously, since the 
querying node and the event source are unaware of each other’s 
location and straightforward techniques satisfy one of the 
properties to the extent of violating the other. For example, 
directed diffusion [14] chooses to optimize the information 
storage (O(1) cost) to the extent of querying (O(d2) cost). 
Combs & needles optimizes querying, O(1), to the extent of 
information storage O(D2). 

Secondly, to be deployable in practice, the in-network 
querying service should require minimal infrastructure and its 
construction should be low cost. In-network querying 
structures that require costly bottom-up constructions are 
impractical and error-prone since flooding based constructions 
are susceptible to severe message losses due to collisions, and 
may even bring the entire network to a grinding halt. 
Experimental work found that message loss due to burst of 
collisions may amount to 50% of total traffic [1][2]. 
Furthermore, querying structures that employ an elaborate 
structure may require high maintenance costs due to node 
failures. 

Finally, the in-network querying service should provide 
graceful resilience to the face of node failures. By graceful 
resilience, we mean that the performance degradation of 
querying should be commensurate with the severity of faults. 
That is, single mote (a WSN node [1]) failure should not impact 
the performance of querying, the failure of large areas of nodes 
may impact the performance only proportional to the diameter 
of the resultant hole in the network and the functionality of 
querying should be preserved unless the network is partitioned.   
Contributions and overview: We present an in-network 
querying infrastructure, namely Distributed Quad-Tree (DQT) 
structure, which satisfies all the requirements above and is 
suitable for real-world WSN deployments.  

DQT overlays quad-tree structure on WSN and satisfies 
distance-sensitive in-network querying as well as efficient 
information storage. The motivation for using quad-trees for 
in-network querying in WSN comes from the extensive use of 
quad-trees [8] in centralized algorithms domains especially in 
the computational geometry area. Quad-tree partitions the 
image into recursively four quadrants, where each node (except 
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leaf nodes) has four children. Due to the hierarchical 
construction, the image can be stored at different layers with 
more refined resolution at lower layers. Here, for our DQT 
construction, we overlay a quad-tree in a distributed manner on 
WSNs as we discuss in Section 5. 

DQT maintains a minimalist structure, and in fact, DQT can 
be considered as stateless. DQT achieves this feat by 
employing an encoding technique that maps a quad-tree over 
the deployment area. Just by using the location information at a 
mote and the coordinates of the top-left and bottom-right 
corners of the deployment area, our encoding maps a WSN 
mote to the corresponding level 1 box address. A level 1 box is 
a smallest partition area in DQT. The addresses of the 
clusterhead and neighboring clusterheads at each level for a 
given node are easily derivable arithmetically using the node’s 
DQT address. The implication is that the construction of DQT 
is local and does not require any communication at all. By 
exploiting the location information we avoid a costly 
bottom-up construction.  

In our DQT embedding, we choose clusterheads at each level 
to be the ones closest to the base station at the center of the 
network rather than the ones closest to the center of the box at 
that level. Note that selecting the clusterheads to be the center 
of each level box results in backward links, and suboptimal 
paths while going to the clusterheads at higher levels. Our use 
of geometry in selecting clusterheads ensures that there are no 
backward links during the querying and advertise operations. 
The encoding and DQT structure construction is discussed in 
Section 4. 

The stateless operation of DQT makes it resilient to the face 
of node failures and topology changes. To achieve resiliency 
while routing to clusterheads or neighbors in the structure, 
DQT maps the DQT address of the destination to the physical 
coordinates, and leverages on the resilience of a geographic 
routing scheme (such as GPSR) [16] for delivering the 
message. Since mote failures do not often lead to failure of a 
level 1 box, single node failures do not affect the performance 
of DQT. In the case of failures of motes in an area, GPSR 
delivers a message addressed to a box in that area to a mote on 
the boundary of the hole. Since DQT is stateless, the recipient 
mote easily acts as a proxy on behalf of the intended destination 
box, and determine the next step in the query or advertise 
operation by simply plugging the destination box id (instead of 
its own box id) into the corresponding procedures for the DQT 
operation. This way, failures of motes in an area degrade the 
performance of DQT operations proportional to the size of the 
area. Essentially, the degradation is equal to that of routing 
stretch in GPSR due to the holes. DQT preserves correct 
functionality unless the network is partitioned, and even then, 
functionality is satisfied within each partition. We discuss the 
resilience of DQT in Section 6. 

Our simulation results using ns2 serve as empirical 
validation of scalability, distance-sensitivity, and resilience of 
DQT. We present our simulation results in Section 7. 

 

II. RELATED WORK 
Centralized querying has been the common mode of 

querying in WSN. For this mode of operation, the base station 
acts as the point where the query is introduced and results are 
gathered. For example, in TinyDB [17], queries are first parsed 
at the base station and disseminated into the WSN to be 
executed. This centralized structure may not be feasible for 
distributed and self-organizing sensor networks since: (1) such 
a base station may not exist, (2) for in-network queries, a query 
may be introduced from any node in the network and 
propagating the query to the base station is costly. 

Geographic Hash Tables (GHT) [18] gives a simple solution 
for in-network querying problem: GHT stores and retrieves 
information by using a geographic hash function on the type of 
the information. GHT can hash event information far away 
from the nearby query nodes, and thus violate the distance 
sensitivity of querying. The average cost of GHT is D/3 
according to [5], where D is the diameter of the network. 
Although hierarchical version of GHT alleviates this problem, 
the problem cannot be solved entirely. DQT structure improves 
over GHT by providing distance sensitive querying. 

To support efficient in-network queries and to store the 
indices of data, some sort of hierarchy seems beneficial. Here 
the idea is to push the query to the higher levels until it is 
resolved at some level. The query then traverses the subtree to 
get relevant information. Distance Sensitive Information 
Brokerage (DSIB) protocol [9] achieves distance-sensitivity in 
a hierarchically partitioned network by using a push-based 
approach: an event advertises to neighbors as well as its parents 
at every level of the hierarchy. DSIB does not require 
localization information and relies purely on communication 
topology. To this end, DSIB introduces a costly bottom-up 
construction and a special purpose routing algorithm. In 
contrast to DSIB, DQT assumes localization information and in 
turn is able to provide an efficient local construction. Use of 
localization information is not impractical via GPS or other 
localization techniques. Real-world WSN deployments such as 
Lites [1] and Exscal [2] already utilize localization information 
in their construction. Also, DQT relies on the resiliency of the 
GPSR rather than introducing a routing algorithm.  

DIFS [10] considers arbitrary and complex queries, and 
extends traditional binary-tree and quad-tree by allowing 
multiple parents and multiple roots. DIFS is susceptible to the 
distance sensitivity problem: a node may have several parents, 
some of which maybe located far away. Thus constructing the 
DIFS structure and update operations are expensive. This is the 
price DIFS pays to handle arbitrary complex queries about 
sensor values rather than just binary event information as we 
focus on in DQT. 

DIMENSIONS [23] system provides a unified view of data 
processing and in-network querying in WSNs. Similar to our 
scheme, clusterheads are elected to be on the path to the base 
station in DIMENSIONS; straight-line intersection and 
geometric calculation are used to this end. Compared to 
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DIMENSIONS, DQT provides a more robust and lightweight 
method for electing the clusterheads (Section 4).Moreover, 
instead of simply copying data to multiple places for handling 
fault tolerance, DQT achieves resilience by exploiting GSPR 
routing and stateless nature of the hierarchical structure without 
sacrificing much flexibility and space. 

III. MODEL 

We assume that the WSN motes sit on a two dimensional 
plane and their coordinates (x,y) are made available to 
themselves.i We assume a connected network and availability 
of geographic routing such as greedy perimeter stateless 
routing (GPSR) [16] or CLDP [15]. There may exist some 
coverage holes in the network, but no partitions (i.e., isolated 
regions). Our analytical results for DQT are proved in Section 
V in the absence of holes in the network, and in Section VII via 
simulations we show how they hold up in the presence of holes 
in the network. 

As we describe in the next section, the network is divided 
into grid cells while embedding a DQT over the network. A 
level 1 box in DQT constitutes the smallest cell area in the DQT 
structure. We assume that all motes inside a level 1 box are 
within one hop distance. In our terminology, a mote refers to a 
physical WSN node, while a “node” refers to a virtual DQT 
node, such a level 1 box. 

The cost of querying an event is measured as the number of 
hops traveled from the querying mote to a mote that holds an 
advertisement about the event. 

IV. DQT STRUCTURE AND CONSTRUCTION 
 

 

 
i Extension of DQT structure to 3D is straightforward 

 
Figure 1, Node addressing and tree structure 

 
For constructing DQT, we employ an encoding trick first 

presented in [11]. In this encoding, each level 1 box in the 
structure is assigned an ID which uniquely identifies a region. 
The length of the ID is equal to the number of levels. We use 
this addressing scheme to preserve the location information of a 
node. Due to the way we construct level 1 boxes, this scheme is 
independent of the number of nodes, but relies on the partition 
levels. Fig.1 illustrates the addresses of the nodes in a region 
with 3 levels. 

Similar to the centralized quad-tree, DQT is a hierarchical 
structure. In each level of partition, a node is assigned as 
clusterhead node of the region. The clusterhead is always its 
own child in lower levels. The clusterhead at each level 
partition is statically assigned to be closest node to the 
geographic center point of the entire network. For example, in 
level 1 partition, node 003 is selected as clusterhead for 00 
region, because it is closer to center than nodes 000, 001 and 
002. Similarly, node 033 is selected as level 2 clusterhead, as it 
is closer to the center than level 2 nodes 003, 013, and 023. 
Hence, the node closest to the center of the entire network in 
each subpartition is selected as the parent node of that 
subpartition. The benefit of such a selection is to avoid 
backward links.  For example, in Fig.1, node 000 propagates 
the query to its root node 033 by first contacting parent node 
003, then 003’s parent 033. A short path is achieved since there 
is no backward link on the querying path. A DQT node may 
belong to different levels in the hierarchy depending on its 
location. If a node is a member at level k, it is also a member at 
all levels less than k. We denote a node p’s parent as p.parent 
and children as p.child. The neighboring nodes are called 
siblings, which are denoted as p.sibling.  

   This structure is quite simple and adapts to 
multi-dimensional sensor readings, such as (temp, light, 
humidity), since the construction of DQT is not related to the 
sensor value. Another difference between DQT and the 
centralized quad-tree is that DQT does not need a root of the 
tree. The four nodes in the top level function as the root.  

4.1. Mapping from localization to DQT addressing 
Each node in DQT can calculate the DQT address of the 

level 1 partition it resides in from its x,y coordinates easily. Let 
(xs,ys) at NW and (xe,ye) at SE be the two endpoints of the area 
where DQT should be overlayed. Assume DQT have i levels. 
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The area of each level 1 box of partition is lw* , where width 
i
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of a node(x,y) can be calculated as: 
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The mapping calculates the X and Y address separately, and 

then adds them together. We can verify this from Fig. 1, for 
instance, node ID 033 is obtained by adding 011 and 022, and 
node ID 332 is obtained by adding 110 and 222. The reason that 
the second term in the DQT address calculation is multiplied by 
2 is because the Y addresses pace by 2 for every increment in 
DQT addressing scheme. Given this mapping, any node can 
locally compute its DQT address based on its coordinates (x,y).  

Besides the DQT address, each node also maintains its (x,y) 
coordinate address. This location information is used in GPSR 
routing in querying and advertising. Since GPSR routing only 
requires single hop information, which has already been cached 
as level one neighbors in our structure, it is quite simple to 
adapt to WSN. When the coverage has irregular holes, local 
optimal path can be reached using right hand rules in GPSR. By 
using the above encoding trick and assigning DQT addresses 
for DQT nodes, we can start constructing the DQT structure. 

4.2 DQT Local Construction 
DQT uses local construction instead of bottom-up 

construction to reduce communication cost during initial 
construction. A static and local scheme that uses the address of 
the box suffices for calculating every level clusterheads and 
neighbors. Each node may have neighbors at N, S, E, W, NE, 
NW, SE and SW. The following two methods can be used to 
find the clusterhead and neighbors at level i. 

The {clusterhead validate} algorithm provides the relation of 
the DQT address to its clusterhead. We find that in NW region 
of the map, nodes with DQT-address “3” at level i and lower 
positions (denoted as p.address(i*)) become the clusterheads at 
the corresponding level. Similarly, in NorthEast partition, 
nodes with DQT-address “2” at level i become the clusterheads. 
In Fig.2, p.address(h) is the highest bit of the DQT-address, 
which determines the region of a node.  This algorithm 
guarantees the clusterheads at each level are closer to the map 
center than any children (except for itself).  

 
 
 
 
 
 
 
 
 
 
 
To find the neighbors, we again make use of the location 

information. We use node p and node q to represent the 

originator and its neighbor. First we use p’s location 
information and increase its coordinates x, y value by a level i 
box lateral length to find a neighbor node in each direction. If 
either of x or y value exceeds the range of the map, we ignore 
that neighbor. For each of these nodes, we find their level i 
clusterheads. These clusterheads are node p’s level i neighbors. 
For instance, given a node 20l at level 2, we can find its 
neighbor at north direction by following two steps: (1) Reduce 
Y value by a level two box length, then we can locate the node 
021 through the new (x,y) coordinates; (2). Find the clusterhead 
for node 021 at level 2, which is 023. The detailed algorithm is 
in the technical report [6]. 

V. QUERYING IN DQT 
 Before discussing querying in detail, we discuss how events 

are indexed in DQT. 

5.1 Indexing of event information 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3, node 003’s sibling structure 
In any hierarchical structure as with DQT, some multi-level 

boundary nodes are far away from each other in the structure, 
while actually they are placed nearby in the network. High 
latency maybe introduced if the search follows the path of the 
tree structure strictly. For example in Fig.1, node 011 and 100 
are neighbors. A query from node 011 to node 100 may route to 
higher level clusterheads such as node 013 and node 033. Our 
solution is to use sibling links to nearby intermediate nodes. A 
sibling link is the link between a node and its neighbors in each 
direction (so each may at most have 8 sibling neighbors). The 
sibling links only exist between nodes on the same level in the 
structure. Fig.3 illustrates the point of view of an intermediate 
node 003 in the distributed quad-tree structure. The nodes with 
“#” are level 1 sibling nodes, the nodes with “##” are level 2 
sibling nodes. A node at level i maintains the event information 
of its cluster, as well as the event information of its neighbors. 

When an event is detected at a level 1 node p, p contacts its 
immediate parent node at level 1. The parent node updates its 
record for that child. Node p also contacts it sibling nodes to 
update their records accordingly. Recursively, the update 
operation is executed till the top level. This is similar to the 
information storage scheme discussed in [9] and the sibling 
links in Stalk [7]. 

000 
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010 
# 

011 100  

002 
# 

003 012 
# 
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## 

102  

020 
# 

021 
# 

030 
# 

031 120  

022 023 
## 

032 033 
## 

122  

200 201 210 211 300  

      

Procedure Cluster_head_Validate (node p,level i) 
Switch (p.address(h)) 
Case 3: //p in SE region 
 { If p.address(i*) == 0, then return true; else return false}  
Case 2: /p in SW region 
 { If p.address(i*) == 1,then return true, else return false} 
Case 1: //p in NE region 
 { If p.address(i*) == 2, then return true, else return false} 
Case 0: // p in NW region 
 { If p.address(i*) == 3, then return true, else return false} 

Figure 2 clusterhead validate algorithm 
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5.2 Nearest Neighbor query 
Nearest Neighbor (NN) query is defined as, finding the data 

object which is closest to the querying object given a set of 
objects. The classic NN query returns exactly one object as a 
result. In WSNs, a query can be started at any location. The 
initiator of a query is the node where the query is entered into 
the system. The query point is the node for which we want to 
get NN query result. Query point by default is the same node as 
initiator of query but it may be specified to be any point in the 
network.  

Our algorithm prevents the propagation of searching to 
higher levels if it can be answered locally. Through taking 
advantage of the spatiality information, both the query 
efficiency and latency is greatly improved. Our query strategy 
is to start the query at the query point using local information 
because the node may belong to multiple levels and therefore 
hold multi-layer information locally. If no result is obtained, 
the query is propagated to the parent recursively. At some level 
the event information is reached, the query is then stopped and 
returned to the originator. 

What if the query point is at another location? That means 
the initiator of the query and the query point belong to two 
different nodes. First the query is passed to the query point 
from the initiator of the query using GPSR routing scheme, and 
then this querying process is started from the query point. The 
following results are in the absence of faults. In the simulation 
section, we talk about the results in the presence of faults.  
Lemma 1. A DQT node at level i stores O (i) information. 
Proof. A node at level i is clusterhead from level 1 to i along the 
path. The number of neighbor nodes at each level is less than or 
equal to eight. Therefore the node needs 9*i (including one 
record for its subtree) space and stores O ( i ) information.  
Theorem 1. The total space needed for the construction of 
distributed quad-tree is less than 12*b, where b is the total 
number of level 1 nodes. 
Proof: According to Lemma 1, level 1 nodes use up 9*b space. 
Similarly, all level 2 nodes total to a 9*b/4 space usage. Thus, 
the total space needed for constructing the distributed quad-tree 
is: 

b
b

bbbb 12)11(*12)1...
44

(*9 2 <−=++++  

Lemma 2. The distance between a level i node and its 
neighbors is at most 2*2i hops.ii 
Proof: According to the partition rule of quad-tree, a level i 
node is the clusterhead of a 2i *2i area. The distance between a 
level i node and its neighbors is either 2i (for N, S, E, W 
neighbors) or 2*2 i (for NE, NW, SE, SW neighbors) 
depending on the direction. Since the clusterhead is one of its 
neighbors at level i, so the distance between a level i node and 
its clusterhead is also less than 2*2 i   hops, which is the 
diagonal distance of a level i partition.  

 
ii The result is based on the assumption that width equals to length for each 

level 1 box.  

Theorem 2. The distance stretch factor s for spatial query in 
our structure is 22 in worst case. In another words, an event 
d hops away can be achieved by the querying node within 

22*d hops. 
Proof: A query from an intermediate level node does not 
constitute the worst case. The reason is that the clusterhead 
nodes holds multi-levels information locally and this local 
cache can be used to answer queries. So, let’s consider a query 
from a bottom level node that reaches a level j clusterhead. We 
define the query cost as the number of hops from the query 
point to the node that holds the result. 

 

d

d1

P

M

Q

 
 
Figure 4. Distance stretch factor s analysis   

In Fig.4, d1 is the distance from querying node Q to highest 
level of node M that the query is propagated; d is the distance 
from Q to P, where P is the destination node that node Q is 
querying. Distance stretch factor s is defined as dds /1= . 

According Lemma 2, the distance from level i-1 node to its 
parent node (level i) is 2*2 1−i  hops. Since the backward links 
are avoided in going-up phase, the total distance from level 1 to 
level j can be calculated as (1+21+22+…+2j-1)* 2 ,which is 
overall )12(*21 −= jd hops. Since P and Q are not i-1 
level neighbors, the distance 12 −≥ jd . The equivalence is true 
when P and Q are located exactly on the opposite borders of a 
level i-1 box. Hence: 

dds /1= 12/)12(*2 −−≤ jj  < 22  
 Based on the result on case 1 and case 2 analyses, we 
conclude that our structure is distance sensitive with a distance 
stretch factor 22 . 

VI. FAULT TOLERANCE 
DQT is fault tolerant due to several aspects. 
First, any leaf node failure is masked without causing any 

update operation and structure change. This is because, for a 
dense sensor network, each level 1 partition contains several 
nodes and all nodes in the same partition share a common DQT 
ID. Moreover, since DQT structure is stateless, the nodes do 
not need to maintain a state of its own, they act on behalf of 
other nodes in the level 1 box.  

Second, DQT can handle coverage holes nicely. Only if all 
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the motes inside a level 1 partition fail (although this is unlikely 
to happen) a hole may be formed in DQT. Using the right hand 
rule, GPSR re-routes the information to the closest node to the 
target node, which we call the proxy node. The proxy node 
pretends to be the target node and finds its neighbors through 
local computation. Then it follows the NN searching algorithm 
in Fig.2. Change of the shape of a hole only changes the 
selection of proxy nodes, and has little influence on other 
nodes.  

Failures may cause the following two cases. Case 1: Failures 
happen before the event advertisement. When a target node of 
event advertisement fails, the event is published to proxy node 
by default, which is the closest node to the failure node. The 
failure of advertising destination node will not affect the query 
result in theory, since it can reach the proxy node. Case 2: The 
event has already been published in the structure before the 
failure happens. When a node with event advertisement dies, 
queries to this node are passed to its parent node. In this case, 
the event is still reachable unless all the nodes along the 
querying path were dead. We will further discuss the 
performance of each case in simulation part.  
Load balancing: Static hierarchical configuration and 
clusterhead election lead to unbalanced energy consumption at 
various levels. High level nodes are more frequently utilized 
and prone to depleting. Load balancing can be achieved by 
shifting the decomposition direction periodically, such that the 
clusterheads can be rotated at various regions. Instead of 
choosing the clusterhead toward the center, they can be easily 
modified to any other directions. In those cases root nodes will 
be distributed to each geographic corners. DQT pays no extra 
costs for such alternation since the DQT is maintained as 
stateless.  

VII. SIMULATION 
We investigate the performance characteristic of DQT using 

the ns-2 wireless network simulator. Our simulations mainly 
focus on two aspects: stretch factor and fault tolerance. 256 
nodes are simulated in our experiment, which are uniformly 
distributed in a 2-dimensional square of 3200x3200. The 
distance between each node is 200m, while the transmission 
range is set to be 250m. Therefore the average degree is about 4 
in the field except some border nodes. That is, not all the level 1 
neighbors are reachable via single hop. The geographic 
location of each node is available, and is used to construct the 
DQT structure in initial phase. The height of the DQT tree is 4, 
with 4 roots at the top level. The cost of querying an event is 
measured as the number of hops from the querying node to the 
node that holds an advertisement about the event.  

Our experiments focus on node-level behavior instead of 
mote-level behavior. Recall that each node represents a level 1 
box in the map. As a result, a node failure in our experiment 
means all the motes in an area of the corresponding level 1 box 
failed. 

7.1. Stretch factor in the absence of faults 
  We have proved in Theorem 4 that the stretch factor in worst 
case is 22 . We calculate the average distance stretch factor 
through 100 runs of each experiment. In each round, a 
query/sink node pair is randomly chosen.  We use two 
measurements s and s’, where s is the ratio of the DQT querying 
cost to the distance between the query and the event node and s’ 
is the ratio of the DQT querying cost to the GPSR cost. The 
value of s shows the ratio to ideal cost, whereas s’ ratio of 
routing a message from the querying point to the event. We 
found the average s is around 0.6 and s’ is around 0.5 in the 
absence of faults. The reason that s is much smaller than 

22 is that the worst case scenarios only occupy a small 
percentage of the total. Our scheme has a considerably smaller 
stretch factor compared to the DSIB scheme, which has an 
average value 0.9~1.  

Fig.5 illustrates the average stretch factor s and s´, as well as 
their standard deviations where the event and querying pairs are 
randomly selected with varied distance between the query node 
and event node. For nearby pairs, the s and s´ tend to be close to 
1, since either GPSR or DQT makes little difference. The 
average stretch factor s decreases with the increase of the 
distance of query/event pairs. But we also find, that when the 
distance is close to the diameter of the map (such as to 14/16 
etc), s and s´ slightly increase again. We call this phenomenon 
border effect. The reason is that when the pair of nodes 
approach the borders of the maps, they are less likely to be 
connected through their common neighbors.  

 

 
Figure 5: Stretch factor s and s´ with varied query distance 

7.2 Fault tolerance 
DQT is robust in that a single mote failure will not change 

the structure and the query operation. To evaluate the 
performance of DQT, node failure in the structure is simulated. 
We use the same topology and setting in our experiment. We 
randomly remove a certain percentage of nodes, from 2% to 
20%.  

We first experiment on the DQT query success rate with 
node failure. Note that, for case 1, the event still publishes in 
proxy node when the destination node fails. Theoretically there 
is no failure for querying, unless GPSR fails to forward along 
the path or the network is isolated. In case 2, the query is 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

3330



 

extended to the parent node when a node with event 
advertisement fails. A query may fail when all event nodes 
along the querying path fail. Fig.6 shows that for case 1, when 
query success rate can drop down to 95% when 20% of nodes 
fail. However, for case2, the DQT scheme itself may fail 
besides the GPSR routing failure. The failure rate goes up to  

 

 
Figure 6: DQT success rate for case 1 and case 2 

 

 
Figure 7: Stretch factor with node failure: Case 1 

15% in case 2. The result may vary in real environment due to 
the increase of GPSR failure and link asymmetry. Increasing 
the degree of nodes or node density is helpful in improving the 
query success rate. 

From the stretch factor point of view, case 2 is also worse 
than case 1. Fig.7 and Fig.8 illustrate the stretch factor with 
varied possibilities of node failure for case 1 and case 2. In both 
cases, DQT works fairly well within 10% failure of nodes. 
With the increase in the failure rate, the value s get worse 
quickly for both cases, because the query circumvents the holes 
(due to failure), which increases the cost of searching rapidly. 
Case 1 performs better than case 2 because in the occurrence of 
holes, case 2 circumvents the hole and query its parent, while in 
case 1, the event is achievable through a proxy node. The s´ 

remains relatively small since the same overhead applies for 
GPSR to overcome the coverage holes. The results also indicate 
that the degradation of performance is smooth overall.  

Finally, for case 2, we plot the trends of s and s’ with respect 
to query distance in Fig.9. Obviously, the failure of nodes 
affects the overall performance of the DQT. When the failure 
rate increase, both s and s’ will increase for each distance. The s 
and s’ is more closely related in the absence of failure or when 
the failure rate is small. 

 
Figure 8: Stretch factor with node failure: Case 2 

 

 
Figure 9: Stretch factor with respect to distance under different failure rate 
     

VIII. CONCLUSION 
We presented an in-network querying infrastructure, namely 

distributed quad-tree (DQT) structure, suitable for use in real 
world WSN deployments. DQT satisfies distance-sensitive 
querying as well as efficient information storage in network. 
DQT construction is local and does not require any 
communication. Moreover, due to its minimalist infrastructure 
and stateless nature, DQT shows graceful resilience to the face 
of node failures. 

 DQT is amenable to being extended to arbitrary and 
complex queries rather than the binary version “is there an 
event?” queries we presented here. In that case, since the 
queries are arbitrary, the information advertisement cannot 
anticipate all queries, and only a summary of sensor data should 
be stored for energy-efficiency purposes. As such, for 
resolution of queries there may be several matching options 
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that need to be explored but may not satisfy the query and may 
result in back-tracking. Model-based query optimization 
techniques to improve the performance of complex queries are 
part of our future work. 

The stateless nature of DQT makes it resilient to topology 
changes. In fact, it may be possible to extend DQT to provide a 
location service for mobile ad hoc networks. The idea is to retry 
a query until it catches up with the mobile target. Even though a 
target node may move during the query execution and leads to a 
miss, the query when invoked from this new location closer to 
the target node will have a better chance to catch up to the target 
node due to the distance-sensitivity property in DQT.  
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