

Murat Demirbas, Xuming Lu

Dept of Computer Science and Engineering, University at Buffalo, SUNY, NY 14260
{demirbas, xuminglu}@cse.buffalo.edu

Abstract— In contrast to the traditional wireless sensor
network (WSN) applications that perform only data collection
and aggregation, new generation of information processing
applications, such as pursuit-evasion games, tracking, evacuation,
and disaster relief applications, require in-network information
storage and querying. Due to the resource limitations of WSNs, it
is challenging to implement in-network information storage and
querying in a resilient, energy-efficient, and distributed manner.
To address these challenges, we exploit location information and
geometry of the network and present an in-network querying
infrastructure, namely distributed quad-tree (DQT) structure.
DQT satisfies efficient in-network information storage as well as
distance-sensitive querying: the cost of answering a query for an
event is at most a constant factor (in our case 22) of the
distance “d” to the nearest event in the network. DQT
construction is local and does not require any communication.
Moreover, due to its minimalist infrastructure and stateless
nature, DQT shows graceful resilience to the face of failures.

Keywords: Distance Sensitive In-network Querying, Spatial
Querying, Distributed Quad-tree, Wireless Sensor Networks, GPSR

I. INTRODUCTION

Traditionally wireless sensor networks (WSNs) have been
treated mostly as data collection and aggregation networks.
Examples of these include WSNs deployed for environmental
monitoring [19][22] and military surveillance [1][2]. However,
as the WSN technology matured, WSNs started to serve more
as active information processing tools instead of passive
information gathering mechanisms. Examples of these
information processing WSNs include pursuer-evader
applications [4][20], evacuation applications [3] etc., where
mobile entities query the WSN on the spot to learn about their
surroundings. Latency and energy-efficiency suffer drastically
if these queries are always routed over multiple hops to a
centralized base station for resolution. Thus, in-network
information storage and querying techniques, such as data
centric storage [21] and geometric hash functions [18] have
been developed to address these issues.

While in-network querying alleviates the latency and
energy-efficiency concerns of information processing WSN
applications, certain requirements need to be satisfied by the
in-network querying service to be deployable in practice.
Firstly, the in-network querying service needs to be
distance-sensitive for querying and also efficient for

information storage. Distance-sensitivity for querying implies
that the cost of answering a query for an event should be at most
a constant factor “s” of the distance “d” to the nearest event in
the network. Efficient information storage for events implies
that the cost of advertising event information is at most a
constant factor of the diameter “D” of the network. It is
challenging to satisfy both properties simultaneously, since the
querying node and the event source are unaware of each other’s
location and straightforward techniques satisfy one of the
properties to the extent of violating the other. For example,
directed diffusion [14] chooses to optimize the information
storage (O(1) cost) to the extent of querying (O(d2) cost).
Combs & needles optimizes querying, O(1), to the extent of
information storage O(D2).

Secondly, to be deployable in practice, the in-network
querying service should require minimal infrastructure and its
construction should be low cost. In-network querying
structures that require costly bottom-up constructions are
impractical and error-prone since flooding based constructions
are susceptible to severe message losses due to collisions, and
may even bring the entire network to a grinding halt.
Experimental work found that message loss due to burst of
collisions may amount to 50% of total traffic [1][2].
Furthermore, querying structures that employ an elaborate
structure may require high maintenance costs due to node
failures.

Finally, the in-network querying service should provide
graceful resilience to the face of node failures. By graceful
resilience, we mean that the performance degradation of
querying should be commensurate with the severity of faults.
That is, single mote (a WSN node [1]) failure should not impact
the performance of querying, the failure of large areas of nodes
may impact the performance only proportional to the diameter
of the resultant hole in the network and the functionality of
querying should be preserved unless the network is partitioned.
Contributions and overview: We present an in-network
querying infrastructure, namely Distributed Quad-Tree (DQT)
structure, which satisfies all the requirements above and is
suitable for real-world WSN deployments.

DQT overlays quad-tree structure on WSN and satisfies
distance-sensitive in-network querying as well as efficient
information storage. The motivation for using quad-trees for
in-network querying in WSN comes from the extensive use of
quad-trees [8] in centralized algorithms domains especially in
the computational geometry area. Quad-tree partitions the
image into recursively four quadrants, where each node (except

Distributed Quad-Tree for Spatial Querying in
Wireless Sensor Networks

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3325

leaf nodes) has four children. Due to the hierarchical
construction, the image can be stored at different layers with
more refined resolution at lower layers. Here, for our DQT
construction, we overlay a quad-tree in a distributed manner on
WSNs as we discuss in Section 5.

DQT maintains a minimalist structure, and in fact, DQT can
be considered as stateless. DQT achieves this feat by
employing an encoding technique that maps a quad-tree over
the deployment area. Just by using the location information at a
mote and the coordinates of the top-left and bottom-right
corners of the deployment area, our encoding maps a WSN
mote to the corresponding level 1 box address. A level 1 box is
a smallest partition area in DQT. The addresses of the
clusterhead and neighboring clusterheads at each level for a
given node are easily derivable arithmetically using the node’s
DQT address. The implication is that the construction of DQT
is local and does not require any communication at all. By
exploiting the location information we avoid a costly
bottom-up construction.

In our DQT embedding, we choose clusterheads at each level
to be the ones closest to the base station at the center of the
network rather than the ones closest to the center of the box at
that level. Note that selecting the clusterheads to be the center
of each level box results in backward links, and suboptimal
paths while going to the clusterheads at higher levels. Our use
of geometry in selecting clusterheads ensures that there are no
backward links during the querying and advertise operations.
The encoding and DQT structure construction is discussed in
Section 4.

The stateless operation of DQT makes it resilient to the face
of node failures and topology changes. To achieve resiliency
while routing to clusterheads or neighbors in the structure,
DQT maps the DQT address of the destination to the physical
coordinates, and leverages on the resilience of a geographic
routing scheme (such as GPSR) [16] for delivering the
message. Since mote failures do not often lead to failure of a
level 1 box, single node failures do not affect the performance
of DQT. In the case of failures of motes in an area, GPSR
delivers a message addressed to a box in that area to a mote on
the boundary of the hole. Since DQT is stateless, the recipient
mote easily acts as a proxy on behalf of the intended destination
box, and determine the next step in the query or advertise
operation by simply plugging the destination box id (instead of
its own box id) into the corresponding procedures for the DQT
operation. This way, failures of motes in an area degrade the
performance of DQT operations proportional to the size of the
area. Essentially, the degradation is equal to that of routing
stretch in GPSR due to the holes. DQT preserves correct
functionality unless the network is partitioned, and even then,
functionality is satisfied within each partition. We discuss the
resilience of DQT in Section 6.

Our simulation results using ns2 serve as empirical
validation of scalability, distance-sensitivity, and resilience of
DQT. We present our simulation results in Section 7.

II. RELATED WORK
Centralized querying has been the common mode of

querying in WSN. For this mode of operation, the base station
acts as the point where the query is introduced and results are
gathered. For example, in TinyDB [17], queries are first parsed
at the base station and disseminated into the WSN to be
executed. This centralized structure may not be feasible for
distributed and self-organizing sensor networks since: (1) such
a base station may not exist, (2) for in-network queries, a query
may be introduced from any node in the network and
propagating the query to the base station is costly.

Geographic Hash Tables (GHT) [18] gives a simple solution
for in-network querying problem: GHT stores and retrieves
information by using a geographic hash function on the type of
the information. GHT can hash event information far away
from the nearby query nodes, and thus violate the distance
sensitivity of querying. The average cost of GHT is D/3
according to [5], where D is the diameter of the network.
Although hierarchical version of GHT alleviates this problem,
the problem cannot be solved entirely. DQT structure improves
over GHT by providing distance sensitive querying.

To support efficient in-network queries and to store the
indices of data, some sort of hierarchy seems beneficial. Here
the idea is to push the query to the higher levels until it is
resolved at some level. The query then traverses the subtree to
get relevant information. Distance Sensitive Information
Brokerage (DSIB) protocol [9] achieves distance-sensitivity in
a hierarchically partitioned network by using a push-based
approach: an event advertises to neighbors as well as its parents
at every level of the hierarchy. DSIB does not require
localization information and relies purely on communication
topology. To this end, DSIB introduces a costly bottom-up
construction and a special purpose routing algorithm. In
contrast to DSIB, DQT assumes localization information and in
turn is able to provide an efficient local construction. Use of
localization information is not impractical via GPS or other
localization techniques. Real-world WSN deployments such as
Lites [1] and Exscal [2] already utilize localization information
in their construction. Also, DQT relies on the resiliency of the
GPSR rather than introducing a routing algorithm.

DIFS [10] considers arbitrary and complex queries, and
extends traditional binary-tree and quad-tree by allowing
multiple parents and multiple roots. DIFS is susceptible to the
distance sensitivity problem: a node may have several parents,
some of which maybe located far away. Thus constructing the
DIFS structure and update operations are expensive. This is the
price DIFS pays to handle arbitrary complex queries about
sensor values rather than just binary event information as we
focus on in DQT.

DIMENSIONS [23] system provides a unified view of data
processing and in-network querying in WSNs. Similar to our
scheme, clusterheads are elected to be on the path to the base
station in DIMENSIONS; straight-line intersection and
geometric calculation are used to this end. Compared to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3326

DIMENSIONS, DQT provides a more robust and lightweight
method for electing the clusterheads (Section 4).Moreover,
instead of simply copying data to multiple places for handling
fault tolerance, DQT achieves resilience by exploiting GSPR
routing and stateless nature of the hierarchical structure without
sacrificing much flexibility and space.

III. MODEL

We assume that the WSN motes sit on a two dimensional
plane and their coordinates (x,y) are made available to
themselves.i We assume a connected network and availability
of geographic routing such as greedy perimeter stateless
routing (GPSR) [16] or CLDP [15]. There may exist some
coverage holes in the network, but no partitions (i.e., isolated
regions). Our analytical results for DQT are proved in Section
V in the absence of holes in the network, and in Section VII via
simulations we show how they hold up in the presence of holes
in the network.

As we describe in the next section, the network is divided
into grid cells while embedding a DQT over the network. A
level 1 box in DQT constitutes the smallest cell area in the DQT
structure. We assume that all motes inside a level 1 box are
within one hop distance. In our terminology, a mote refers to a
physical WSN node, while a “node” refers to a virtual DQT
node, such a level 1 box.

The cost of querying an event is measured as the number of
hops traveled from the querying mote to a mote that holds an
advertisement about the event.

IV. DQT STRUCTURE AND CONSTRUCTION

i Extension of DQT structure to 3D is straightforward

Figure 1, Node addressing and tree structure

For constructing DQT, we employ an encoding trick first

presented in [11]. In this encoding, each level 1 box in the
structure is assigned an ID which uniquely identifies a region.
The length of the ID is equal to the number of levels. We use
this addressing scheme to preserve the location information of a
node. Due to the way we construct level 1 boxes, this scheme is
independent of the number of nodes, but relies on the partition
levels. Fig.1 illustrates the addresses of the nodes in a region
with 3 levels.

Similar to the centralized quad-tree, DQT is a hierarchical
structure. In each level of partition, a node is assigned as
clusterhead node of the region. The clusterhead is always its
own child in lower levels. The clusterhead at each level
partition is statically assigned to be closest node to the
geographic center point of the entire network. For example, in
level 1 partition, node 003 is selected as clusterhead for 00
region, because it is closer to center than nodes 000, 001 and
002. Similarly, node 033 is selected as level 2 clusterhead, as it
is closer to the center than level 2 nodes 003, 013, and 023.
Hence, the node closest to the center of the entire network in
each subpartition is selected as the parent node of that
subpartition. The benefit of such a selection is to avoid
backward links. For example, in Fig.1, node 000 propagates
the query to its root node 033 by first contacting parent node
003, then 003’s parent 033. A short path is achieved since there
is no backward link on the querying path. A DQT node may
belong to different levels in the hierarchy depending on its
location. If a node is a member at level k, it is also a member at
all levels less than k. We denote a node p’s parent as p.parent
and children as p.child. The neighboring nodes are called
siblings, which are denoted as p.sibling.

 This structure is quite simple and adapts to
multi-dimensional sensor readings, such as (temp, light,
humidity), since the construction of DQT is not related to the
sensor value. Another difference between DQT and the
centralized quad-tree is that DQT does not need a root of the
tree. The four nodes in the top level function as the root.

4.1. Mapping from localization to DQT addressing
Each node in DQT can calculate the DQT address of the

level 1 partition it resides in from its x,y coordinates easily. Let
(xs,ys) at NW and (xe,ye) at SE be the two endpoints of the area
where DQT should be overlayed. Assume DQT have i levels.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3327

The area of each level 1 box of partition is lw* , where width
i

se yyw 2/)(−= and length i
se xxl 2/)(−= . Then DQT address

of a node(x,y) can be calculated as:

2*)2(mod
)(

)2(mod
)(

_

 −
+

 −
=

l
yy

w
xx

addrDQT ss

The mapping calculates the X and Y address separately, and

then adds them together. We can verify this from Fig. 1, for
instance, node ID 033 is obtained by adding 011 and 022, and
node ID 332 is obtained by adding 110 and 222. The reason that
the second term in the DQT address calculation is multiplied by
2 is because the Y addresses pace by 2 for every increment in
DQT addressing scheme. Given this mapping, any node can
locally compute its DQT address based on its coordinates (x,y).

Besides the DQT address, each node also maintains its (x,y)
coordinate address. This location information is used in GPSR
routing in querying and advertising. Since GPSR routing only
requires single hop information, which has already been cached
as level one neighbors in our structure, it is quite simple to
adapt to WSN. When the coverage has irregular holes, local
optimal path can be reached using right hand rules in GPSR. By
using the above encoding trick and assigning DQT addresses
for DQT nodes, we can start constructing the DQT structure.

4.2 DQT Local Construction
DQT uses local construction instead of bottom-up

construction to reduce communication cost during initial
construction. A static and local scheme that uses the address of
the box suffices for calculating every level clusterheads and
neighbors. Each node may have neighbors at N, S, E, W, NE,
NW, SE and SW. The following two methods can be used to
find the clusterhead and neighbors at level i.

The {clusterhead validate} algorithm provides the relation of
the DQT address to its clusterhead. We find that in NW region
of the map, nodes with DQT-address “3” at level i and lower
positions (denoted as p.address(i*)) become the clusterheads at
the corresponding level. Similarly, in NorthEast partition,
nodes with DQT-address “2” at level i become the clusterheads.
In Fig.2, p.address(h) is the highest bit of the DQT-address,
which determines the region of a node. This algorithm
guarantees the clusterheads at each level are closer to the map
center than any children (except for itself).

To find the neighbors, we again make use of the location

information. We use node p and node q to represent the

originator and its neighbor. First we use p’s location
information and increase its coordinates x, y value by a level i
box lateral length to find a neighbor node in each direction. If
either of x or y value exceeds the range of the map, we ignore
that neighbor. For each of these nodes, we find their level i
clusterheads. These clusterheads are node p’s level i neighbors.
For instance, given a node 20l at level 2, we can find its
neighbor at north direction by following two steps: (1) Reduce
Y value by a level two box length, then we can locate the node
021 through the new (x,y) coordinates; (2). Find the clusterhead
for node 021 at level 2, which is 023. The detailed algorithm is
in the technical report [6].

V. QUERYING IN DQT
 Before discussing querying in detail, we discuss how events

are indexed in DQT.

5.1 Indexing of event information

Figure 3, node 003’s sibling structure
In any hierarchical structure as with DQT, some multi-level

boundary nodes are far away from each other in the structure,
while actually they are placed nearby in the network. High
latency maybe introduced if the search follows the path of the
tree structure strictly. For example in Fig.1, node 011 and 100
are neighbors. A query from node 011 to node 100 may route to
higher level clusterheads such as node 013 and node 033. Our
solution is to use sibling links to nearby intermediate nodes. A
sibling link is the link between a node and its neighbors in each
direction (so each may at most have 8 sibling neighbors). The
sibling links only exist between nodes on the same level in the
structure. Fig.3 illustrates the point of view of an intermediate
node 003 in the distributed quad-tree structure. The nodes with
“#” are level 1 sibling nodes, the nodes with “##” are level 2
sibling nodes. A node at level i maintains the event information
of its cluster, as well as the event information of its neighbors.

When an event is detected at a level 1 node p, p contacts its
immediate parent node at level 1. The parent node updates its
record for that child. Node p also contacts it sibling nodes to
update their records accordingly. Recursively, the update
operation is executed till the top level. This is similar to the
information storage scheme discussed in [9] and the sibling
links in Stalk [7].

000

001

010

011 100

002

003 012

013

102

020

021

030

031 120

022 023

032 033

122

200 201 210 211 300

Procedure Cluster_head_Validate (node p,level i)
Switch (p.address(h))
Case 3: //p in SE region
 { If p.address(i*) == 0, then return true; else return false}
Case 2: /p in SW region
 { If p.address(i*) == 1,then return true, else return false}
Case 1: //p in NE region
 { If p.address(i*) == 2, then return true, else return false}
Case 0: // p in NW region
 { If p.address(i*) == 3, then return true, else return false}

Figure 2 clusterhead validate algorithm

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3328

5.2 Nearest Neighbor query
Nearest Neighbor (NN) query is defined as, finding the data

object which is closest to the querying object given a set of
objects. The classic NN query returns exactly one object as a
result. In WSNs, a query can be started at any location. The
initiator of a query is the node where the query is entered into
the system. The query point is the node for which we want to
get NN query result. Query point by default is the same node as
initiator of query but it may be specified to be any point in the
network.

Our algorithm prevents the propagation of searching to
higher levels if it can be answered locally. Through taking
advantage of the spatiality information, both the query
efficiency and latency is greatly improved. Our query strategy
is to start the query at the query point using local information
because the node may belong to multiple levels and therefore
hold multi-layer information locally. If no result is obtained,
the query is propagated to the parent recursively. At some level
the event information is reached, the query is then stopped and
returned to the originator.

What if the query point is at another location? That means
the initiator of the query and the query point belong to two
different nodes. First the query is passed to the query point
from the initiator of the query using GPSR routing scheme, and
then this querying process is started from the query point. The
following results are in the absence of faults. In the simulation
section, we talk about the results in the presence of faults.
Lemma 1. A DQT node at level i stores O (i) information.
Proof. A node at level i is clusterhead from level 1 to i along the
path. The number of neighbor nodes at each level is less than or
equal to eight. Therefore the node needs 9*i (including one
record for its subtree) space and stores O (i) information.
Theorem 1. The total space needed for the construction of
distributed quad-tree is less than 12*b, where b is the total
number of level 1 nodes.
Proof: According to Lemma 1, level 1 nodes use up 9*b space.
Similarly, all level 2 nodes total to a 9*b/4 space usage. Thus,
the total space needed for constructing the distributed quad-tree
is:

b
b

bbbb 12)11(*12)1...
44

(*9 2 <−=++++

Lemma 2. The distance between a level i node and its
neighbors is at most 2*2i hops.ii
Proof: According to the partition rule of quad-tree, a level i
node is the clusterhead of a 2i *2i area. The distance between a
level i node and its neighbors is either 2i (for N, S, E, W
neighbors) or 2*2 i (for NE, NW, SE, SW neighbors)
depending on the direction. Since the clusterhead is one of its
neighbors at level i, so the distance between a level i node and
its clusterhead is also less than 2*2 i hops, which is the
diagonal distance of a level i partition.

ii The result is based on the assumption that width equals to length for each

level 1 box.

Theorem 2. The distance stretch factor s for spatial query in
our structure is 22 in worst case. In another words, an event
d hops away can be achieved by the querying node within

22*d hops.
Proof: A query from an intermediate level node does not
constitute the worst case. The reason is that the clusterhead
nodes holds multi-levels information locally and this local
cache can be used to answer queries. So, let’s consider a query
from a bottom level node that reaches a level j clusterhead. We
define the query cost as the number of hops from the query
point to the node that holds the result.

d

d1

P

M

Q

Figure 4. Distance stretch factor s analysis

In Fig.4, d1 is the distance from querying node Q to highest
level of node M that the query is propagated; d is the distance
from Q to P, where P is the destination node that node Q is
querying. Distance stretch factor s is defined as dds /1= .

According Lemma 2, the distance from level i-1 node to its
parent node (level i) is 2*2 1−i hops. Since the backward links
are avoided in going-up phase, the total distance from level 1 to
level j can be calculated as (1+21+22+…+2j-1)* 2 ,which is
overall)12(*21 −= jd hops. Since P and Q are not i-1
level neighbors, the distance 12 −≥ jd . The equivalence is true
when P and Q are located exactly on the opposite borders of a
level i-1 box. Hence:

dds /1= 12/)12(*2 −−≤ jj < 22
 Based on the result on case 1 and case 2 analyses, we
conclude that our structure is distance sensitive with a distance
stretch factor 22 .

VI. FAULT TOLERANCE
DQT is fault tolerant due to several aspects.
First, any leaf node failure is masked without causing any

update operation and structure change. This is because, for a
dense sensor network, each level 1 partition contains several
nodes and all nodes in the same partition share a common DQT
ID. Moreover, since DQT structure is stateless, the nodes do
not need to maintain a state of its own, they act on behalf of
other nodes in the level 1 box.

Second, DQT can handle coverage holes nicely. Only if all

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3329

the motes inside a level 1 partition fail (although this is unlikely
to happen) a hole may be formed in DQT. Using the right hand
rule, GPSR re-routes the information to the closest node to the
target node, which we call the proxy node. The proxy node
pretends to be the target node and finds its neighbors through
local computation. Then it follows the NN searching algorithm
in Fig.2. Change of the shape of a hole only changes the
selection of proxy nodes, and has little influence on other
nodes.

Failures may cause the following two cases. Case 1: Failures
happen before the event advertisement. When a target node of
event advertisement fails, the event is published to proxy node
by default, which is the closest node to the failure node. The
failure of advertising destination node will not affect the query
result in theory, since it can reach the proxy node. Case 2: The
event has already been published in the structure before the
failure happens. When a node with event advertisement dies,
queries to this node are passed to its parent node. In this case,
the event is still reachable unless all the nodes along the
querying path were dead. We will further discuss the
performance of each case in simulation part.
Load balancing: Static hierarchical configuration and
clusterhead election lead to unbalanced energy consumption at
various levels. High level nodes are more frequently utilized
and prone to depleting. Load balancing can be achieved by
shifting the decomposition direction periodically, such that the
clusterheads can be rotated at various regions. Instead of
choosing the clusterhead toward the center, they can be easily
modified to any other directions. In those cases root nodes will
be distributed to each geographic corners. DQT pays no extra
costs for such alternation since the DQT is maintained as
stateless.

VII. SIMULATION
We investigate the performance characteristic of DQT using

the ns-2 wireless network simulator. Our simulations mainly
focus on two aspects: stretch factor and fault tolerance. 256
nodes are simulated in our experiment, which are uniformly
distributed in a 2-dimensional square of 3200x3200. The
distance between each node is 200m, while the transmission
range is set to be 250m. Therefore the average degree is about 4
in the field except some border nodes. That is, not all the level 1
neighbors are reachable via single hop. The geographic
location of each node is available, and is used to construct the
DQT structure in initial phase. The height of the DQT tree is 4,
with 4 roots at the top level. The cost of querying an event is
measured as the number of hops from the querying node to the
node that holds an advertisement about the event.

Our experiments focus on node-level behavior instead of
mote-level behavior. Recall that each node represents a level 1
box in the map. As a result, a node failure in our experiment
means all the motes in an area of the corresponding level 1 box
failed.

7.1. Stretch factor in the absence of faults
 We have proved in Theorem 4 that the stretch factor in worst
case is 22 . We calculate the average distance stretch factor
through 100 runs of each experiment. In each round, a
query/sink node pair is randomly chosen. We use two
measurements s and s’, where s is the ratio of the DQT querying
cost to the distance between the query and the event node and s’
is the ratio of the DQT querying cost to the GPSR cost. The
value of s shows the ratio to ideal cost, whereas s’ ratio of
routing a message from the querying point to the event. We
found the average s is around 0.6 and s’ is around 0.5 in the
absence of faults. The reason that s is much smaller than

22 is that the worst case scenarios only occupy a small
percentage of the total. Our scheme has a considerably smaller
stretch factor compared to the DSIB scheme, which has an
average value 0.9~1.

Fig.5 illustrates the average stretch factor s and s´, as well as
their standard deviations where the event and querying pairs are
randomly selected with varied distance between the query node
and event node. For nearby pairs, the s and s´ tend to be close to
1, since either GPSR or DQT makes little difference. The
average stretch factor s decreases with the increase of the
distance of query/event pairs. But we also find, that when the
distance is close to the diameter of the map (such as to 14/16
etc), s and s´ slightly increase again. We call this phenomenon
border effect. The reason is that when the pair of nodes
approach the borders of the maps, they are less likely to be
connected through their common neighbors.

Figure 5: Stretch factor s and s´ with varied query distance

7.2 Fault tolerance
DQT is robust in that a single mote failure will not change

the structure and the query operation. To evaluate the
performance of DQT, node failure in the structure is simulated.
We use the same topology and setting in our experiment. We
randomly remove a certain percentage of nodes, from 2% to
20%.

We first experiment on the DQT query success rate with
node failure. Note that, for case 1, the event still publishes in
proxy node when the destination node fails. Theoretically there
is no failure for querying, unless GPSR fails to forward along
the path or the network is isolated. In case 2, the query is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3330

extended to the parent node when a node with event
advertisement fails. A query may fail when all event nodes
along the querying path fail. Fig.6 shows that for case 1, when
query success rate can drop down to 95% when 20% of nodes
fail. However, for case2, the DQT scheme itself may fail
besides the GPSR routing failure. The failure rate goes up to

Figure 6: DQT success rate for case 1 and case 2

Figure 7: Stretch factor with node failure: Case 1

15% in case 2. The result may vary in real environment due to
the increase of GPSR failure and link asymmetry. Increasing
the degree of nodes or node density is helpful in improving the
query success rate.

From the stretch factor point of view, case 2 is also worse
than case 1. Fig.7 and Fig.8 illustrate the stretch factor with
varied possibilities of node failure for case 1 and case 2. In both
cases, DQT works fairly well within 10% failure of nodes.
With the increase in the failure rate, the value s get worse
quickly for both cases, because the query circumvents the holes
(due to failure), which increases the cost of searching rapidly.
Case 1 performs better than case 2 because in the occurrence of
holes, case 2 circumvents the hole and query its parent, while in
case 1, the event is achievable through a proxy node. The s´

remains relatively small since the same overhead applies for
GPSR to overcome the coverage holes. The results also indicate
that the degradation of performance is smooth overall.

Finally, for case 2, we plot the trends of s and s’ with respect
to query distance in Fig.9. Obviously, the failure of nodes
affects the overall performance of the DQT. When the failure
rate increase, both s and s’ will increase for each distance. The s
and s’ is more closely related in the absence of failure or when
the failure rate is small.

Figure 8: Stretch factor with node failure: Case 2

Figure 9: Stretch factor with respect to distance under different failure rate

VIII. CONCLUSION
We presented an in-network querying infrastructure, namely

distributed quad-tree (DQT) structure, suitable for use in real
world WSN deployments. DQT satisfies distance-sensitive
querying as well as efficient information storage in network.
DQT construction is local and does not require any
communication. Moreover, due to its minimalist infrastructure
and stateless nature, DQT shows graceful resilience to the face
of node failures.

 DQT is amenable to being extended to arbitrary and
complex queries rather than the binary version “is there an
event?” queries we presented here. In that case, since the
queries are arbitrary, the information advertisement cannot
anticipate all queries, and only a summary of sensor data should
be stored for energy-efficiency purposes. As such, for
resolution of queries there may be several matching options

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3331

that need to be explored but may not satisfy the query and may
result in back-tracking. Model-based query optimization
techniques to improve the performance of complex queries are
part of our future work.

The stateless nature of DQT makes it resilient to topology
changes. In fact, it may be possible to extend DQT to provide a
location service for mobile ad hoc networks. The idea is to retry
a query until it catches up with the mobile target. Even though a
target node may move during the query execution and leads to a
miss, the query when invoked from this new location closer to
the target node will have a better chance to catch up to the target
node due to the distance-sensitivity property in DQT.

REFERENCES
[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, et al., A Line

in the Sand: A Wireless Sensor Network for Target Detection,
Classification, and Tracking, Computer Networks, Vol. 46, Issue 5, pp.
605-634, Dec. 5, 2004.

[2] A. Arora, R. Ramnath, E. Ertin, and P. S. et. al., Exscal: Elements of an
extreme scale wireless sensor network, in 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2005.

[3] C.K.Constantine, Sensor Networks Applied to the Problem of Building
Evacuation: An Evaluation in Simulation, Proceedings of the 15th IST
Mobile and Wireless Summit, June 2006, Mykonos, Greece.

[4] M. Demirbas, A. Arora, and M. Gouda, Pursuer - Evader Tracking in
Sensor Networks. Sensor Network Operations, chp.9, IEEE Press, May
2006.

[5] M. Demirbas, A. Arora, and V. Kulathumani. Glance: A Lightweight
Querying Service for Wireless Sensor Networks. OPODIS'06
December 2006.

[6] M.Demirbas, X.Lu, Distributed Quad-Tree for Spatial Querying in
Wireless Sensor Networks, Technical Report, number 2006-31,
Department of Computer Science and Engineering, SUNY Buffalo.

[7] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A Hierarchy-based
Fault-local Stabilizing Algorithm for Tracking in Sensor Networks. 8th
International Conference on Principles of Distributed Systems
(OPODIS), France, December 2004.

[8] R. Finkel and J.L. Bentley , Quad Trees: A Data Structure for Retrieval
on Composite Keys. Acta Informatica ,1974,4 (1): 1-9.

[9] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distancesensitive
routing and information brokerage in sensor networks. In DOCSS,
2006.

[10] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker.
Difs: A distributed index for features in sensor networks. First IEEE
Ineternational Workshop on Sensor Network Protocols and
Applications, May 2003.

[11] I. Gargantini. An effective way to represent quad-trees. Commun.
ACM, 5(12):905--910, 1982.

[12] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, Fractionally Cascaded
Information in a Sensor Network, Proc. of the 3rd International
Symposium on Information Processing in Sensor Networks (IPSN'04),
311-319, April, 2004.

[13] J.Hightower, G.Borriello,"Location systems for ubiquitous
computing." IEEE Computer, Vol. 34, No. 8, August 2001 pp 57-66

[14] C. Intanagonwiwat, R.Govindan ,D.Estrin, Directed diffusion: a
scalable and robust communication paradigm for sensor networks,
Proceedings of the 6th annual international conference on Mobile
computing and networking, p.56-67, August 06-11, 2000, Boston,
United States.

[15] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing
made practical. In Proceedings of NSDI 2005, pages 217.230, May
2005.

[16] B. Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for
wireless networks. In MobiCom: Proceedings of the 6th annual

international conference on Mobile computing and networking, pages
243–254, 2000.

[17] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, San Diego, June
2003.

[18] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker. Ght: a geographic hash table for datacentric storage. In
WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 78–87, 2002.

[19] R. Szewczyk, A. Mainwaring, J. Polastre and D. Culler, An Analysis of
a Large Scale Habitat Monitoring Application, Sensys 2004.

[20] L. Schenato, S. Oh, and S. Sastry, Swarm coordination for pursuit
evasion games using sensor networks, in Proc. of the International
Conference on Robotics and Automation, Barcelona, Spain, 2005

[21] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan and D. Estrin,
Data-centric Storage in Sensornets, in Workshop Record of the First
Workshop on Hot Topics in Networks (HotNets-I), October 2002

[22] G.Tolle, J.Polastre, et.al, A Macroscope in the Redwoods, In
Proceedings of the Third ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2-4, 2005.

[23] D.Ganesan, D.Estrin, and J.Heidemann. DIMENSIONS: Why do we
need a new Data Handling architecture for Sensor Networks? In
Proceedings of the ACM Workshop on Hot Topics in Networks, pp.
143-148. Princeton, NJ, USA, ACM. October, 2002

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

3332

